
Starting with
the End in Mind

How Solutions ITW Refactored, Rebuilt, and
Reintroduced Its Flagship Software Package

864-404-3265
info@solutionsitw.com
solutionsitw.com/solutions-dgr

Solutions ITW
620 North Main Street, Suite 200
Greenville, SC 29601

https://solutionsitw.com

1.	 INTRODUCTION 03

2.	 BACKGROUND 04

3.	 EXPLANATION 05

		 3.1 VISION 05

		 3.2 DESIGN 06

		 3.3 FAILURE 06

		 3.4 SUCCESS 07

		 3.5 BETA 08

4.	 PRESENTATION OF FINDINGS 09

5.	 CONCLUSION 10

		 5.1 COMMUNICATION 10

		 5.2 BACKWARDS COMPATIBILITY 10

		 5.3 EASE OF ROLLOUT 11

		 5.4 BETA EXIT 12

		 5.5 LESSONS LEARNED 13

6.	 SUMMARY 14

TABLE OF CONTENTS

Since the beginning of the software development
age, BETA releases and bugs have gone
hand-in-hand, and for good reason. Software
development is the translation of logical ideas
and strategies into the digital medium. The
source of this logical thinking is human beings,
and as long as humans are flawed in their
logic and translation of that logic to the digital
medium, there will be bugs.

BETA releases represent code that, while
having undergone significant testing in the lab,
has not gone through significant testing “in
the wild,” the space we call “the real world.” In
this space, developers present their preciously-
crafted applications (digital translations of
human logic) to be used and validated by other
logical beings.

Surprise! Those beings employ different logical
thinking than the developer.

“I never thought of that,” and “You aren’t
supposed to use it like that,” and similar become

the developer’s mantra during this BETA testing
period as they see bugs roll in from the real-
world usage of their application. This process
repeats itself over and over until the developer
and the user come to a logical agreement and
validation for the usage of the application.
The duration of this process depends on how
adept the developer is at anticipating the user’s
thinking and behavior.

Wouldn’t it be great if logical beings could
anticipate what other logical beings think? How
advantageous would it be if logical beings could
communicate with other logical beings to share
their ideas/logic to shorten the BETA process
and bring applications to General Release more
quickly?

We at Solutions ITW proposed to do this in the
release of our new platform, Solutions DGR 5.0.
Our goal was to port our 17-year-old-.Net-
Windows-code-base to a web-based platform
with little-to-no downtime for our clients… and
we succeeded!

INTRODUCTION

Starting with the End in Mind | Solutions DGR 5.0 3

To be sure, we are not the first people in history
to have posited that greater collaboration
between developers and users leads to better
software quality and improved customer
experiences. This is precisely what the 2001
Agile Manifesto (http://agilemanifesto.org/
principles.html) proposed in ground-breaking
fashion. We at Solutions ITW simply employed
these principles to see if we could achieve the
results we wanted/needed.

Solutions ITW has been helping Goodwills
implement Donated Goods Retail (DGR or Thrift)
management solutions to meet the challenges of
Goodwill’s unique retail needs since 2006. Our
team of 17 employees works with our Goodwill
partners to configure a uniquely implemented
system that allows each Goodwill to manage
their thrift operations the way they want their
operations managed. And because the system
walks employees through best practices and
helps to enforce retail processes, Goodwills
can realize strong ROIs much more quickly.
Employees are successful while helping the
organization succeed. Our mission is to help
Goodwill succeed - at all levels, and we believe
Solutions DGR accomplishes that mission.

However, the application was dated. Whenever
a new version was ready for release, each
workstation had to be touched at every location
(600+ at the time of the release of the 5.0
Production Module update). With an average
of 7 workstations at each location, keeping
all clients up to date in a timely manner was
untenable. Beyond that, by the time a location
had been updated, the following application

version release would be ready, and the client
would be behind again.

Added to this was that all bug fixes required the
same amount of labor to roll out. There was no
light at the end of the tunnel. All our time was
spent treading water (i.e., keeping the current
system running), and we were failing. We had
to concede that the platform needed to be
more scalable and was in danger of becoming
obsolete. We also concluded that, while the
platform provided significant value to our clients,
that value was slowly diminishing due to the
effort required to roll out new features and bug
fixes. The only way to continue to serve our
clientele well was to refactor the Solutions DGR
application and platform completely.

Our clients agreed with our assessment. By
the time we arrived at this conclusion, most of
our clients had their very own version of the
software due to version fragmentation. Bugs
lingered and promised features never arrived.
Our clients let us know, in no uncertain terms,
that something had to change.

BACKGROUND

So, we began the most
aggressive and consequential

project in our history, the
complete refactoring of our

flagship application.

Starting with the End in Mind | Solutions DGR 5.0 4

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

VISION
Committing to the re-architecting and rebuilding of a company’s foundational software package is
not a small commitment. It is akin to rebuilding the plane while it is flying. We were keenly aware that
a significant misstep at this stage could ruin the company. As such, our team committed itself to the
ideal of the second habit:

Start with the end in mind.

While this was the largest project our team had ever undertaken, we had completed significant
projects in the past. As a team, we learned that not knowing where we were headed was a recipe for
disaster. The decision to envision not only the final product but the process to get there had the most
significant impact on the success of the project. From the start, we outlined the following definition of
success for the project:

EXPLANATION

The application had to be easy to use with limited training.
Our clients did not have time to retrain their entire workforce. It could not be that in our attempt
to improve the platform for our clients, we would be adding to their burden.

The application could not cause downtime for clients.
We expected there to be bugs and issues, but those issues could not lead to our clients being
unable to make money. It could not have any noticeable negative impact on their operations.

The application had to have the same feature set as the existing application.
We had worked hard to build an unrivaled application in the industry, and this new platform
needed to be a step forward. We needed to provide the same value in this platform that was
already available in the existing.

The application had to build confidence.
An application that frequently crashed, was difficult to navigate, or produced incorrect results
would not inspire confidence. We needed an application that worked how our clients needed it,
even in the BETA phase.

We also needed the platform to inspire our development team. They would be the ones to maintain
and expand the platform. They needed to have a platform they trusted and even enjoyed.

1

2

3

4

Starting with the End in Mind | Solutions DGR 5.0 5

https://www.franklincovey.com/habit-2/

DESIGN
In keeping with the Agile principle of fostering differing perspectives and collaboration during the
design phase, we pulled experienced employees from all departments to design the new application
and platform. We gave them the vision (boundaries) for the project and asked them to answer the
following question:

If you had a magic wand and were able to start over with our platform, what would the
final product look like?

We then asked this same question to several of our closest clients. Based on both sets of feedback, we
created the following list of objectives for the project:

•	 Data Transfer Stability

•	 Operational Stability

•	 Change Stability

•	 Standardized Environment

•	 Single Version

•	 Quick Change Release

•	 Self Maintenance (through automation)

•	 Self Implementation (through automation)

•	 1-Step Deployment

•	 Cross Platform

We were surprised that multiple changes/wishes/requests were reported back from our clients that
needed to be added to our list. Our client interaction forcibly reminded us that our clients would only
consider this platform change a success if it met their needs. So we tabled some of the changes
included in our internal review and prioritized our customer requests instead.

FAILURE
With the list of enhancements and requests in hand, we would like to report that the process of
scoping out the work, creating tasks, creating sprints, assigning tasks, and doing the work was a
remarkable success. However, that would not be the truth.

We struggled mightily as a team. We knew where we wanted to go and what we wanted the end
product to look like. We had the full support of our team and clients. We were fully funded to make
this leap. But we needed more operational experience and industry knowledge to move our team

Starting with the End in Mind | Solutions DGR 5.0 6

effectively toward our goal. In deconstructing the most significant challenges during this time, we
have determined that communication, in its many forms, was lacking for this project:

•	 Developers did not have a firm grasp of all the
work that had to be done.

Senior Management was vague in its
communication, “Include all the functionality
already in the existing platform.”

•	 Senior Management did not realize that the
developers were struggling.

Developers put their heads down to do the
work assigned to them, were self-reliant in
pursuing answers to their questions, and did not
communicate challenges back to leadership.

•	 Senior Management was not able to see
progress (or the lack of progress)

Developers were able to show UML designs
and code windows and were even able to show
working code. They were not able to show
any interconnected code working. But Senior
Management did not pick up on this.

Because of this, it was always a surprise when
dates were missed because “we had been making
such good progress.”

At this point in the project, about 1.25 years into a 1-year project, we began to fear that we had made
a terrible mistake.

SUCCESS
It was only when we were able to hire a new DevOps Manager that things improved. While we
enjoyed significant success in other areas under our previous DevOps Manager, our new DevOps
Manager brought more real-world development management skills to the table. In a matter of months,
our team was able to visually see where we stood, though we were still struggling to see what still
remained to be done. Regardless, we were taking small steps forward.

Our morning stand-ups turned from complaining sessions to identifying what needed to be done and
who was going to do the work and then became one of reporting the work that one had done the day
before while identifying what they would be doing that day.

Starting with the End in Mind | Solutions DGR 5.0 7

The communication between the developers and Senior Management improved, and we learned
that the developers were missing significant swaths of information. They had a general idea of what
needed to be done and the functionality to include, but they lacked the definitive list. For the first time,
our senior management sat down to make a comprehensive list of the functionality required which
was then divided into tasks and estimated. We began to see the light at the end of the tunnel and had
real hope that the project had a chance of succeeding.

The good news is that while it was confirmed that there was miscommunication among our team
members, there was enough leadership on the team to produce a solid core for the new application.
We were able to progress quickly under new management and were able to see immediate results.

It is important to note that while communication struggled internally, our team did a better job of
remaining in communication with our clients. We repeatedly presented them with the vision of the
project (listed above) and repeatedly received validation of that vision from them. By the time we
reached BETA, our team was confident that as long as the system performed as intended, our clients
would be happy with the direction we had taken with the platform.

BETA
Our team felt confident that they had done enough work to begin planning to deploy the BETA for
Phase 1 of the project. We identified a client who had kept close contact with us during this process
and drafted a BETA contract for them to sign. We wanted our BETA testers to know that we were
expecting things from them. For instance, we expected the following:

•	 Daily usage and testing

•	 Daily feedback in a specific format

•	 Daily progress toward general release

•	 Daily stand-ups

•	 Full and complete compliance with
instructions

•	 A positive attitude and demeanor

If this client were unwilling to participate in this manner, that would be fine, but we would need to find
someone else. We were very fortunate to have this client willing to participate in this way.

Starting with the End in Mind | Solutions DGR 5.0 8

With the functionality for BETA ready to be
released and a willing client in hand, again we
would like to report that the next steps flowed
like clockwork. While it was not as messy
as previous issues, we did encounter some
difficulties even in the rollout of BETA.

Our development team was unwilling to
release the platform for BETA.

The reason? There were known issues in the
platform that still needed to be addressed,
and our developers wanted to ensure that the
platform was perfect before they released it to
the client for BETA.

We had some internal conversations on the
matter and asked ourselves what the purpose of
BETA was if not for the client to knowingly take
an unfinished product and work with it. While
we appreciated that our team wanted to put our
best foot forward, we needed client feedback in
the form of testing as quickly as possible. What
we communicated was that as long as the client
was able to work with the application, it was
time to release the application to them to see
how the platform would stand up to user testing.
To be sure, we had been getting client feedback
all during the process, however this was going to
be the first time we would be able to give them
working code.

In July of 2022, we released Phase 1 of our
Solutions DGR platform refactor to BETA. With
the release, we included a list of known issues
and gave our testers direction on what to test. We
asked them to set up one workstation that would
be used for as long as possible. If the application
did not crash or present any other issues, we
expected the testers to use the application all
day. The first day the users had the application,
they were able to use it for a few hours before
having to revert back to the existing version. The
developers made changes to the application, and
our implementation team was able to update
the version the testers were to use by utilizing
the installer application that we had created to
simplify roll outs. The BETA testers were given the
revised application later that week and have been
able to run it for entire days ever since.

In the time that the application was in BETA,
it was only down for half a day. During that
stretch, the development team needed to reverse
a bug that was introduced which caused all
data collected to be lost during a 3-hour stretch
of the day. Other than the initial issues and the
data-loss issues, the BETA experience with the
application was an unmitigated success, and
the application emerged from BETA a month
later, and Phase 1 of the new platform has been
running in multiple live environments for six (6)
months with minimal issues.

PRESENTATION OF
FINDINGS

Starting with the End in Mind | Solutions DGR 5.0 9

There are several factors that we believe contributed to the success of the BETA phase of our new
application.

COMMUNICATION
As already mentioned, we believe that our close communication with the BETA testers before, during,	
and after the BETA phase contributed greatly to the success of the BETA testing phase.

Our testers knew ahead of time what to expect from the application because they were part of the
process to get to where we were. We had several design meetings to lay out how the application was
to work and what we wanted the user experience to be, not just in the use of the application, but also
throughout the BETA process.

Our testers also knew what was expected of them because they signed the BETA testing contract and
were in close contact with our team.

We also had daily stand-up calls with our BETA testers, reinforcing the principle of short feedback
loops, for two reasons. First, to ensure we were fully aware of the latest user experiences, and second,
to ensure that testing was taking place. We were laser-focused on exiting BETA as quickly as possible,
and we needed our testers to be moving at the same speed.

All of this communication ensured that all parties knew what to expect from each other and to stay on
the same page during the BETA.

BACKWARDS COMPATIBILITY
One of our key requirements throughout the entire process was backwards compatibility. Our clients
had to be able to:

1.	 Run the new platform in the same environment and using the same workstations they were
running the existing environment

2.	 Switch back and forth between the new platform and the old in the event of show-stopping bugs

To meet this requirement, our team decided that while we might add to the underlying database
schema, we would not alter it. As long as we ensured that data from the new platform was in the

CONCLUSION

Starting with the End in Mind | Solutions DGR 5.0 10

same format as the existing platform, we would be able to run both platforms on workstations that
were side by side. This accomplished a few things.

1.	 Our clients were able to set up a workstation initially as a training station for the new platform in
the same location as workstations running the existing platform.

2.	 The stores were able to run one workstation on the new platform while running the other
workstations on the existing platform giving them a sense of control and stability.

3.	 If, for whatever reason, the BETA application decided to start having problems, the client was
able to revert back to the existing platform on that workstation, and at the end of the day, all the
data would still flow into the same database schema without any extra effort. This ensured that
there was never any manipulating or massaging of data between the two platforms.

Our avoidance of an all-or-nothing approach to running our BETA phase allowed our clients a degree
of confidence in rolling out this untested application in their LIVE environments. They had a clear
rollback path. They also had a clear training path since they were able to demonstrate the new
application side-by-side with the existing application and could train without changing their process.

EASE OF ROLLOUT
One of the most significant hurdles we were seeking to overcome with this new platform was the need
to perform database updates at each store running our software platform. At the time of the release
of the beta, we had the application running on over 6,000 machines. Most of these machines were on
disparate versions, meaning that they were not even running the same database schemas. It was a
significant challenge to create a set of database update scripts for each one of these installations.

With that in mind, our team proposed to provide for widespread application deployment. We created
an installer application that communicated with our cloud environment and was able to see which
versions were available for download and which version was the latest BETA and LIVE version. It
displayed this information to admin users and allowed them to use the latest version or to download a
specific version.

Starting with the End in Mind | Solutions DGR 5.0 11

Our BETA testers were able to control which versions were on which machines using this tool. This
greater level of control allowed for BETA testing to continue even if a bug were released into the
latest version. Instead of having to revert back to the application's existing version, the testers could
download the previous version of the new application (e.g., one without the bug) and continue testing
the new application.

In addition to the added continuity provided by the installer, the testers were able to install the
application on new machines in 2-3 minutes with just a handful of clicks. Once the application was
installed, the user would run the application which would then download the settings for that location
(i.e., the same settings in use by the rest of the location on the existing version), and within 30 seconds
of starting, the workstation would be ready for use.

Last of all, the design team decided at the outset that we would keep the UI/UX experience as close
to the existing experience as possible. Colors were changed. Fonts were manipulated. Some workflow
aspects were modified, but the feel of the application remained essentially unchanged. So much so,
that one of the BETA sites ran into a situation where they quickly needed another workstation put into
service and opted to use the new platform. Users were up and running on the new workstation with
less than 15 minutes of training due to the similarities in workflow.

This ease of rollout and ease of use has led to strong adoption of the new platform even
during the BETA testing phase.

BETA EXIT
Prior to BETA testing, we performed our ALPHA testing in-house. Several of our implementation and
support team members put the application through its paces until we reached the point where we
“forcibly” released the platform to BETA (see above). By the time ALPHA testing was completed, our
team was feeling good-ish about the platform.

The goal for our BETA testing was to thoroughly test the application and get out of BETA as quickly
as possible. We set as a goal to have no new bugs reported over a seven (7) day stretch and no bugs
currently in the system as our benchmark. When we hit this goal and because of the success we had
already experienced in ALPHA testing, we believed that the system would be solid enough for General
Release.

What we did not expect was that we would reach this mark so quickly. Specifically, we exited BETA a
little over 3 weeks after we started the BETA phase!

Since that time, the application has been rolled out to approximately 109 locations with over 600 daily
users. To be sure, additional issues have been identified, but to date, none of the issues has caused
downtime, and all locations have been able to use the application full-time. Adoption of the application
has yet to encounter much resistance if any, and the success of the BETA has instilled confidence that
the new platform is stable. As a result, these locations have ceased using the previous version of the
application and are running on the new platform.

Starting with the End in Mind | Solutions DGR 5.0 12

LESSONS LEARNED
For the remaining phases of the refactor, our team is committed to
the following improvements and continuations:

•	 Full communication and understanding of features

•	 Detailed decomposition of work to be performed

•	 Empowerment of development team through Agile processes

•	 Continued dedication to process

•	 Continued dedication to testing

•	 Continued dedication to communication

Starting with the End in Mind | Solutions DGR 5.0 13

Our intent was to replace our existing flagship platform with a newly-refactored
platform while ensuring the application:

•	 Was easy to use with limited training

•	 Did not cause down-time for clients

•	 Had the same feature set as the existing application

•	 Built user confidence

We set out to start with the end in mind, foster an inclusive design process, and
encourage short feedback loops. We encountered challenges during development:

•	 Developers did not have a firm grasp on all the work that had to be done

•	 Senior Management did not realize that the developers were struggling

•	 Senior Management was not able to see progress (or the lack of progress)

We overcame these challenges through improved leadership and communication
and were able to successfully and quickly navigate the BETA Testing phase due to
our team’s dedication to:

•	 Internal and External Communication

•	 Backwards Compatibility

•	 Ease of Rollout

SUMMARY

Our team’s dedication to process and communication allowed our team to
deliver this new platform and to meet the defined goals.

Starting with the End in Mind | Solutions DGR 5.0 14

